Getting Started with eksctl

Set up Karpenter with an eksctl cluster

Karpenter automatically provisions new nodes in response to unschedulable pods. Karpenter does this by observing events within the Kubernetes cluster, and then sending commands to the underlying cloud provider.

In this example, the cluster is running on Amazon Web Services (AWS) Elastic Kubernetes Service (EKS). Karpenter is designed to be cloud provider agnostic, but currently only supports AWS. Contributions are welcomed.

This guide should take less than 1 hour to complete, and cost less than $0.25. Follow the clean-up instructions to reduce any charges.

Install

Karpenter is installed in clusters with a Helm chart.

Karpenter requires cloud provider permissions to provision nodes, for AWS IAM Roles for Service Accounts (IRSA) should be used. IRSA permits Karpenter (within the cluster) to make privileged requests to AWS (as the cloud provider) via a ServiceAccount.

Required Utilities

Install these tools before proceeding:

  1. AWS CLI
  2. kubectl - the Kubernetes CLI
  3. eksctl - the CLI for AWS EKS
  4. helm - the package manager for Kubernetes

Configure the AWS CLI with a user that has sufficient privileges to create an EKS cluster. Verify that the CLI can authenticate properly by running aws sts get-caller-identity.

Environment Variables

After setting up the tools, set the following environment variable to the Karpenter version you would like to install.

export KARPENTER_VERSION=v0.11.1

Also set the following environment variables to store commonly used values.

export CLUSTER_NAME="${USER}-karpenter-demo"
export AWS_DEFAULT_REGION="us-west-2"
export AWS_ACCOUNT_ID="$(aws sts get-caller-identity --query Account --output text)"

Create a Cluster

Create a basic cluster with eksctl. Each of the two examples set up an IAM OIDC provider for the cluster to enable IAM roles for pods. The first uses AWS EKS managed node groups for the kube-system and karpenter namespaces, while the second uses Fargate for both namespaces.

Example 1: Create basic cluster

eksctl create cluster -f - << EOF
---
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
  name: ${CLUSTER_NAME}
  region: ${AWS_DEFAULT_REGION}
  version: "1.21"
  tags:
    karpenter.sh/discovery: ${CLUSTER_NAME}
managedNodeGroups:
  - instanceType: m5.large
    amiFamily: AmazonLinux2
    name: ${CLUSTER_NAME}-ng
    desiredCapacity: 1
    minSize: 1
    maxSize: 10
iam:
  withOIDC: true
EOF

export CLUSTER_ENDPOINT="$(aws eks describe-cluster --name ${CLUSTER_NAME} --query "cluster.endpoint" --output text)"

Example 2: Create basic cluster with Karpenter on Fargate

eksctl create cluster -f - << EOF
---
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
  name: ${CLUSTER_NAME}
  region: ${AWS_DEFAULT_REGION}
  version: "1.21"
  tags:
    karpenter.sh/discovery: ${CLUSTER_NAME}
fargateProfiles:
  - name: karpenter
    selectors:
    - namespace: kube-system
    - namespace: karpenter
iam:
  withOIDC: true
EOF

export CLUSTER_ENDPOINT="$(aws eks describe-cluster --name ${CLUSTER_NAME} --query "cluster.endpoint" --output text)"

Karpenter itself can run anywhere, including on self-managed node groups, managed node groups (Example 1), or AWS Fargate(Example 2).

Karpenter will provision EC2 instances in your account.

Create the KarpenterNode IAM Role

Instances launched by Karpenter must run with an InstanceProfile that grants permissions necessary to run containers and configure networking. Karpenter discovers the InstanceProfile using the name KarpenterNodeRole-${ClusterName}.

First, create the IAM resources using AWS CloudFormation.

TEMPOUT=$(mktemp)

curl -fsSL https://karpenter.sh/"${KARPENTER_VERSION}"/getting-started/getting-started-with-eksctl/cloudformation.yaml  > $TEMPOUT \
&& aws cloudformation deploy \
  --stack-name "Karpenter-${CLUSTER_NAME}" \
  --template-file "${TEMPOUT}" \
  --capabilities CAPABILITY_NAMED_IAM \
  --parameter-overrides "ClusterName=${CLUSTER_NAME}"

Second, grant access to instances using the profile to connect to the cluster. This command adds the Karpenter node role to your aws-auth configmap, allowing nodes with this role to connect to the cluster.

eksctl create iamidentitymapping \
  --username system:node:{{EC2PrivateDNSName}} \
  --cluster "${CLUSTER_NAME}" \
  --arn "arn:aws:iam::${AWS_ACCOUNT_ID}:role/KarpenterNodeRole-${CLUSTER_NAME}" \
  --group system:bootstrappers \
  --group system:nodes

Now, Karpenter can launch new EC2 instances and those instances can connect to your cluster.

Create the KarpenterController IAM Role

Karpenter requires permissions like launching instances. This will create an AWS IAM Role, Kubernetes service account, and associate them using IRSA.

eksctl create iamserviceaccount \
  --cluster "${CLUSTER_NAME}" --name karpenter --namespace karpenter \
  --role-name "${CLUSTER_NAME}-karpenter" \
  --attach-policy-arn "arn:aws:iam::${AWS_ACCOUNT_ID}:policy/KarpenterControllerPolicy-${CLUSTER_NAME}" \
  --role-only \
  --approve

export KARPENTER_IAM_ROLE_ARN="arn:aws:iam::${AWS_ACCOUNT_ID}:role/${CLUSTER_NAME}-karpenter"

Create the EC2 Spot Service Linked Role

This step is only necessary if this is the first time you’re using EC2 Spot in this account. More details are available here.

aws iam create-service-linked-role --aws-service-name spot.amazonaws.com || true
# If the role has already been successfully created, you will see:
# An error occurred (InvalidInput) when calling the CreateServiceLinkedRole operation: Service role name AWSServiceRoleForEC2Spot has been taken in this account, please try a different suffix.

Install Karpenter Helm Chart

Use Helm to deploy Karpenter to the cluster.

Before the chart can be installed the repo needs to be added to Helm, run the following commands to add the repo.

helm repo add karpenter https://charts.karpenter.sh/
helm repo update

Install the chart passing in the cluster details and the Karpenter role ARN.

helm upgrade --install --namespace karpenter --create-namespace \
  karpenter karpenter/karpenter \
  --version ${KARPENTER_VERSION} \
  --set serviceAccount.annotations."eks\.amazonaws\.com/role-arn"=${KARPENTER_IAM_ROLE_ARN} \
  --set clusterName=${CLUSTER_NAME} \
  --set clusterEndpoint=${CLUSTER_ENDPOINT} \
  --set aws.defaultInstanceProfile=KarpenterNodeInstanceProfile-${CLUSTER_NAME} \
  --wait # for the defaulting webhook to install before creating a Provisioner

Deploy a temporary Prometheus and Grafana stack (optional)

The following commands will deploy a Prometheus and Grafana stack that is suitable for this guide but does not include persistent storage or other configurations that would be necessary for monitoring a production deployment of Karpenter. This deployment includes two Karpenter dashboards that are automatically onboaraded to Grafana. They provide a variety of visualization examples on Karpenter metrices.

helm repo add grafana-charts https://grafana.github.io/helm-charts
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update

kubectl create namespace monitoring

curl -fsSL https://karpenter.sh/"${KARPENTER_VERSION}"/getting-started/getting-started-with-eksctl/prometheus-values.yaml | tee prometheus-values.yaml
helm install --namespace monitoring prometheus prometheus-community/prometheus --values prometheus-values.yaml

curl -fsSL https://karpenter.sh/"${KARPENTER_VERSION}"/getting-started/getting-started-with-eksctl/grafana-values.yaml | tee grafana-values.yaml
helm install --namespace monitoring grafana grafana-charts/grafana --values grafana-values.yaml

The Grafana instance may be accessed using port forwarding.

kubectl port-forward --namespace monitoring svc/grafana 3000:80

The new stack has only one user, admin, and the password is stored in a secret. The following command will retrieve the password.

kubectl get secret --namespace monitoring grafana -o jsonpath="{.data.admin-password}" | base64 --decode

Provisioner

A single Karpenter provisioner is capable of handling many different pod shapes. Karpenter makes scheduling and provisioning decisions based on pod attributes such as labels and affinity. In other words, Karpenter eliminates the need to manage many different node groups.

Create a default provisioner using the command below. This provisioner uses securityGroupSelector and subnetSelector to discover resources used to launch nodes. We applied the tag karpenter.sh/discovery in the eksctl command above. Depending how these resources are shared between clusters, you may need to use different tagging schemes.

The ttlSecondsAfterEmpty value configures Karpenter to terminate empty nodes. This behavior can be disabled by leaving the value undefined.

Review the provisioner CRD for more information. For example, ttlSecondsUntilExpired configures Karpenter to terminate nodes when a maximum age is reached.

Note: This provisioner will create capacity as long as the sum of all created capacity is less than the specified limit.

cat <<EOF | kubectl apply -f -
apiVersion: karpenter.sh/v1alpha5
kind: Provisioner
metadata:
  name: default
spec:
  requirements:
    - key: karpenter.sh/capacity-type
      operator: In
      values: ["spot"]
  limits:
    resources:
      cpu: 1000
  provider:
    subnetSelector:
      karpenter.sh/discovery: ${CLUSTER_NAME}
    securityGroupSelector:
      karpenter.sh/discovery: ${CLUSTER_NAME}
  ttlSecondsAfterEmpty: 30
EOF

First Use

Karpenter is now active and ready to begin provisioning nodes. Create some pods using a deployment, and watch Karpenter provision nodes in response.

Automatic Node Provisioning

This deployment uses the pause image and starts with zero replicas.

cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
  name: inflate
spec:
  replicas: 0
  selector:
    matchLabels:
      app: inflate
  template:
    metadata:
      labels:
        app: inflate
    spec:
      terminationGracePeriodSeconds: 0
      containers:
        - name: inflate
          image: public.ecr.aws/eks-distro/kubernetes/pause:3.2
          resources:
            requests:
              cpu: 1
EOF
kubectl scale deployment inflate --replicas 5
kubectl logs -f -n karpenter -l app.kubernetes.io/name=karpenter -c controller

Automatic Node Termination

Now, delete the deployment. After 30 seconds (ttlSecondsAfterEmpty), Karpenter should terminate the now empty nodes.

kubectl delete deployment inflate
kubectl logs -f -n karpenter -l app.kubernetes.io/name=karpenter -c controller

Manual Node Termination

If you delete a node with kubectl, Karpenter will gracefully cordon, drain, and shutdown the corresponding instance. Under the hood, Karpenter adds a finalizer to the node object, which blocks deletion until all pods are drained and the instance is terminated. Keep in mind, this only works for nodes provisioned by Karpenter.

kubectl delete node $NODE_NAME

Cleanup

To avoid additional charges, remove the demo infrastructure from your AWS account.

helm uninstall karpenter --namespace karpenter
aws iam detach-role-policy --role-name="${CLUSTER_NAME}-karpenter" --policy-arn="arn:aws:iam::${AWS_ACCOUNT_ID}:policy/KarpenterControllerPolicy-${CLUSTER_NAME}"
aws iam delete-policy --policy-arn="arn:aws:iam::${AWS_ACCOUNT_ID}:policy/KarpenterControllerPolicy-${CLUSTER_NAME}"
aws iam delete-role --role-name="${CLUSTER_NAME}-karpenter"
aws cloudformation delete-stack --stack-name "Karpenter-${CLUSTER_NAME}"
aws ec2 describe-launch-templates \
    | jq -r ".LaunchTemplates[].LaunchTemplateName" \
    | grep -i "Karpenter-${CLUSTER_NAME}" \
    | xargs -I{} aws ec2 delete-launch-template --launch-template-name {}
eksctl delete cluster --name "${CLUSTER_NAME}"
Last modified June 15, 2022 : Release v0.11.1 (205c4db5)